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The effect of hydrodynamic loading on the eigenmode shapes, modal stiffnesses, and optical lever
sensitivities of atomic force microscope �AFM� microcantilevers is investigated by measuring the
vibrations of such microcantilevers in air and water using a scanning laser Doppler vibrometer. It is
found that for rectangular tipless microcantilevers, the measured fundamental and higher
eigenmodes and their equivalent stiffnesses are nearly identical in air and in water. However, for
microcantilevers with a tip mass or for picket shaped cantilevers, there is a marked difference in the
second �and higher� eigenmode shapes between air and water that leads to a large decrease in their
modal stiffness in water as compared to air as well as a decrease in their optical lever sensitivity.
These results are explained in terms of hydrodynamic interactions of microcantilevers with
nonuniform mass distribution. The results clearly demonstrate that tip mass and hydrodynamic
loading must be taken into account in stiffness calibration and optical lever sensitivity calibration
while using higher-order eigenmodes in dynamic AFM. © 2010 American Institute of Physics.
�doi:10.1063/1.3284206�

I. INTRODUCTION AND MOTIVATION

Experimental calibration of the stiffness and optical le-
ver sensitivity of microcantilevers is an active area of re-
search �e.g., Refs. 1–8� due to its importance for quantitative
atomic force microscopy �AFM�.9 Without accurate knowl-
edge of the stiffness of a microcantilever and its optical lever
sensitivity �photodiode output for a given tip deflection�,
quantitative force spectroscopy is not possible. Most AFM
modes require the accurate calibration of the static bending
or first eigenmode stiffness and optical lever sensitivity in
order to obtain quantitative data. The experimental calibra-
tions of the static bending stiffness and optical lever sensi-
tivity are now well established techniques with quantifiable
standards.10 For the most part, the equivalent stiffness and
optical lever sensitivity of the first eigenmode are close to
those of the static values and are also well understood.11,12

However, there is an increasing interest in the use of
higher-order eigenmodes in dynamic AFM especially for ap-
plications where small tip oscillation amplitudes are desired
or where multiple eigenmodes are excited
simultaneously.13–19 Each eigenmode has an associated dy-
namic stiffness �also known as modal stiffness�, which is
different from the static stiffness. This dynamic stiffness can
be related to an equivalent spring that has the same potential
energy as the eigenmode.11 Throughout this paper “stiffness”
will refer to this equivalent stiffness. In contrast with the first
bending eigenmode, the equivalent stiffness and optical lever
sensitivity of the higher-order eigenmodes are not as well
understood, especially in liquid environments. Several au-
thors have reported difficulties calibrating the stiffness of
microcantilevers in liquids.2,20 These authors assume implic-
itly that stiffness is the same in air and liquid and thus sug-

gest that it is preferable to calibrate microcantilever stiffness
in air and then use that stiffness value for measurements in
liquid. Additionally, in most cases only the static bending
optical lever sensitivity is calibrated experimentally, and the
optical lever sensitivity of the higher eigenmodes is inferred
from beam theory.6 It is usually implicitly assumed that the
optical lever sensitivity of higher-order eigenmodes is the
same in air and water.

In this paper, differences in hydrodynamic loading be-
tween air and liquid are investigated with the intent to deter-
mine when it is valid to use stiffness and sensitivity calibra-
tions from air for applications in liquid and when it is not. A
focus is placed on higher-order eigenmodes, in particular, on
the second flexural eigenmode. Specifically, scanning laser
Doppler vibrometry of AFM microcantilevers and theoretical
modeling are used to explore the differences in eigenmode
shapes of �a� rectangular tipless microcantilevers, �b� tipped
AFM microcantilevers, and �c� picket shaped tipless micro-
cantilevers in air and liquid. We find that the first eigenmode
of such AFM microcantilevers is nearly unchanged when
immersed in liquid, implying that any calibration of the first
eigenmode performed in air can be used for operation in
liquid. However, this common assumption can break down
for the second and higher-order eigenmodes. Specifically,
when the mass distribution is not perfectly uniform because
of either significant tip mass ��2% of microcantilever mass�
or a picket shaped end, the eigenmodes, stiffnesses, and op-
tical lever sensitivities of the higher eigenmodes are quite
different in air than in liquids. Using experiments and theory
we lay out the fundamental reasons behind this interesting
finding and provide theoretical estimates of the corrections
that need to be made when using stiffness and optical lever
sensitivities calibrated in air for application in liquid envi-
ronments.a�Electronic mail: raman@purdue.edu.

JOURNAL OF APPLIED PHYSICS 107, 033506 �2010�

0021-8979/2010/107�3�/033506/9/$30.00 © 2010 American Institute of Physics107, 033506-1

Downloaded 14 Jul 2010 to 130.54.110.32. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.3284206
http://dx.doi.org/10.1063/1.3284206
http://dx.doi.org/10.1063/1.3284206


This paper is organized as follows: First, the experimen-
tal data are presented and the results interpreted �Sec. II�.
Then, a theory is given that justifies the interpretation �Sec.
III�. The special case of picket shaped microcantilevers is
discussed �Sec. IV�. Finally, the results are summarized and
discussed further �Sec. V�.

II. EXPERIMENTS

A. Experimental method

The eigenmode shapes of various AFM microcantilevers
were measured using a scanning laser Doppler vibrometer
�Polytec MSA-400 Micro System Analyzer from Polytec
Gmbh, Waldbronn, Germany�. A schematic of the experi-
mental setup is shown in Fig. 1. Thermally driven time series
velocity data of the out-of-plane cantilever vibration were
acquired in both air and water21 at approximately 30 points
along the axis of each microcantilever. From the measured
power spectral density �PSD� at each point along the canti-
lever’s length, it is possible to extract the so-called operating
deflection shape �ODS� at the resonant frequencies �refer to
Fig. 1 for more details�.

The difference between an ODS and an eigenmode is
subtle and the two are often confused. An eigenmode is the

solution to the free, unforced vibration problem �homoge-
neous differential equation� when the system vibrates at a
natural frequency. An ODS is the particular solution to a
forced vibration problem �nonhomogeneous differential
equation�. Any ODS can be expressed as a linear combina-
tion of eigenmodes.22 For typical AFM microcantilevers in
air, because the natural frequencies are spaced far apart and
the quality factors are high, each ODS is dominated by a
single eigenmode, and the ODS is essentially equivalent to
an eigenmode. However, in water, the quality factors are
lower, therefore each ODS may contain contributions from
multiple eigenmodes.23 Specifically while the first ODS is
essentially equivalent to the first eigenmode, the nth �n�2�
order ODS is a linear combination of the first n eigenmodes.

Multiple microcantilevers from different manufacturers
were measured �see insets in Fig. 2�; the results for five
typical microcantilevers are presented. Microcantilever A is a
silicon nitride beam from chip 1 of the Cantilever Array
Discover Platform �Sandia National Laboratories�. This mi-
crocantilever is chosen because it is perfectly rectangular and
has no tip. Microcantilever B is an Olympus24 OMCL-
RC800PSA 20�200 �m2 beam. This microcantilever was
chosen because of its hollow tip, which has vanishingly
small tip mass. Microcantilever C is an Agilent25 MAC lever
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FIG. 1. �Color online� �a� Schematic of experimental setup to measure the ODSs in air and liquids. Approximately 3 s of thermal vibration data were taken
per point for approximately 30 points along the axis of the microcantilever �white dots in �a�� and sampled at approximately 2.5 times the second flexural
resonance frequency. �b� At each point MATLAB’s pwelch command was used to estimate the PSD. For each resonance peak, the magnitude of the PSD at the
corresponding points along the length was used to form a shape �c�. Because the microcantilever base is stationary in this experiment, the measured thermal
response signal at the base was considered to be background sensor noise and was removed from each shape. Then the square root of each point in the shape
is taken to form an ODS, and the ODS is normalized so that the amplitude at the tip is unity �d�.
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type I. Microcantilever D is an NSC12 lever F from
Mikromasch.26 Microcantilevers C and D were chosen be-
cause of their large, solid conical tips that add significant
mass. Microcantilever E is an Applied Nanostructures27

FORTA-TL-10. This microcantilever was chosen because it
has a tipless, picket shaped end. The relevant parameters of
these cantilevers are listed in Table I. Material properties of
the microcantilevers and surrounding media are listed in
Table II.

B. Experimental results: ODSs in air versus water

The first and second flexural ODSs from microcantile-
vers A �tipless�, B �hollow tip�, C �tipped�, and D �tipped�
measured in air and water are shown in Fig. 2. From this,
five major conclusions can be drawn.

�1� Comparing Figs. 2�a�, 2�c�, 2�e�, and 2�g� it is clear that
the first ODS �which is approximately the first eigen-
mode shape� is very nearly identical in air and water for
all microcantilevers tested. This means that the first
eigenmode remains unchanged when a microcantilever
in air is immersed in water.

�2� From Figs. 2�b� and 2�d� it is clear that the second ODS
of microcantilevers A and B is approximately identical
in air and water. This suggests that for cantilevers with
negligible tip mass �i.e., tipless or hollow tip AFM can-
tilevers�, the second eigenmode remains relatively un-
changed when the microcantilever in air is immersed in
water.

�3� However, from Figs. 2�f� and 2�h� it is clear that for
cantilevers C and D, the second ODS in water is quite
different from that in air. The second ODS has a signifi-
cantly smaller maximum amplitude �relative to the tip�
in water than in air, the node is closer to the tip in water,
and the slope near the tip is steeper in water. This im-
plies that when a microcantilever with some tip mass is
immersed in water, the second eigenmode is signifi-
cantly modified.

�4� In air, the second ODSs of microcantilevers A and B are
similar but those of C and D are different. Microcanti-
lever C and D’s second ODS has a larger maximum
amplitude than microcantilever A or B and the node is
closer to the tip. This implies that in air the presence of

TABLE I. Geometric and measured parameters for the microcantilevers studied in this work.

Microcantilever A B C D E
Manufacturer Sandia Olympus Agilent Mikromasch Applied Nanostructures
Model CADP 1 RC800PSA MAC I NSC12 FORTA-TL-10
Beam number N/A 20�200 C F N/A
Material Polysilicon Si3N4 Single crystal Si Single crystal Si Single crystal Si
Nominal stiffness �N/m� 0.0044 0.05 0.6 0.65 3.0
Width b ��m� 29 20 35 35 25
Height h ��m� 0.5 0.8 1 2 2.5
Length L ��m� 300 200 130 250 215

Nondimensional tip mass
mtip

�cAL 0 �0 �0.22 �0.06 0
First resonance f1 �kHz�, air 33.0 19.6 73.1 44.9 77.2
Second resonance f2 �kHz�, air 205 121 575 308 477
Second resonance f2 �kHz�, water 81.6 43.5 218 126 178
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FIG. 2. �Color online� Measured ODSs for the microcantilevers in air
�circles� and water �squares� and a smooth curve fit to the general eigen-
mode shape �see Sec. II C� in air �dashed lines� and water �solid lines�. Left
column first ODS �first eigenmode� and right column second ODS �first
eigenmode plus second eigenmode�. Because thermally driven spectra were
used, phase information is not available and the absolute value of the ODS
is plotted. The base of the microcantilever is to the left and the free end is to
the right. Experimental data are normalized to the same displacement at the
free end for all ODSs.
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a tip mass changes the shape of the second eigenmode
compared to the second eigenmode of an ideal tipless
microcantilever.

�5� In water, the second ODS of all the microcantilevers
�A–D� is similar. This surprising result implies that in
water, the presence or absence of tip mass does not sig-
nificantly affect the second eigenmode shape. This result
is clearly contrary to the result in air.

We now consider the implications of these measure-
ments for the equivalent stiffnesses and optical lever sensi-
tivities of the second eigenmode in air and water for the
different microcantilevers.

C. Experimental results: Equivalent stiffnesses of
eigenmodes in air versus water

We wish to calculate the equivalent stiffness for each
eigenmode of these microcantilevers. However, as pointed
out above, we do not measure directly the eigenmodes but
rather the ODSs so the eigenmodes must be extracted from
the ODSs. The eigenmode shape equation will be derived in
Sec. III. For now we simply state that the general eigenmode
shape for a cantilever beam as a function of the axial position
x nondimensionalized by the microcantilever length is

�i�x� = ��x,�i� = sin��ix� − sinh��ix�

−
sin �i + sinh �i

cos �i + cosh �i
�cos��ix� − cosh��ix�� , �1�

where i=1,2 represent the first and second eigenmodes, and
the eigenmodes are normalized such that �i�1�=1.11 The first
ODS is expected to contain only the first eigenmode. Thus
the value �1 is fitted so that �1�x� matches the first ODS �in
a least squared sense�. However, in liquids, the second ODS

contains contributions from the first and second eigenmodes
due to the low quality factors and this is accounted for in
extracting �2.28

Once the eigenmodes have been extracted, the equiva-
lent stiffness of each eigenmode is computed from11

ki =
EI

L3�
0

1

��i��x��2dx , �2�

where x, E, and I are the distance from the clamp along the
microcantilever axis scaled by the microcantilever length,
Young’s modulus, and cross sectional area moment, respec-
tively, and � · �� denotes x-differentiation. It should be empha-
sized that equivalent stiffnesses are dependent on the choice
of normalization, and requiring �i�1�=1 is a useful choice
for AFM applications. That is, the equivalent point-mass
model is chosen such that the deflection of the point mass is
equal to the deflection at the free end of the
microcantilever.11

In practice, Eq. �2� is difficult to apply directly. The
value of I may not be known because it depends on the
microcantilever thickness, which is difficult to measure. In-
deed, one reason for the popularity of Sader’s4 method for
experimental stiffness calibration over previous methods is
that it does not depend on measuring the microcantilever
thickness. To avoid this difficulty, this paper will focus on
stiffness ratios, either the ratio of equivalent stiffness in air
versus water or the ratio of equivalent stiffness to static
bending stiffness kc. This obviates the need to know I or E.

The measured equivalent stiffnesses of the second ODSs
of the cantilevers in air and water are listed in Table III, from
which three observations can be made.

�1� Microcantilevers C and D have a significantly lower k2

in water as compared to air, while for microcantilevers A
and B the ratio k2

water /k2
air is near unity.

�2� Microcantilever A and B’s k2
air /kc are both within 6% of

the theoretical value for a uniform rectangular beam
�k2 /kc=40.6, where kc is the static bending stiffness�,
while microcantilever C and D’s k2

air /kc are significantly
greater than this.

�3� Microcantilevers A–D’s k2
water /kc are all within 15% of

each other.

TABLE II. Material properties required for the theoretical predictions.

Parameter Material Value

Density � f �kg /m3� Air 1.21
Density � f �kg /m3� Water 998
Density �c �kg /m3� Silicon 2300
Viscosity � �kg /m s� Air 1.98�10−5

Viscosity � �kg /m s� Water 1�10−3

TABLE III. Calculated and fit parameters for the microcantilevers �second bending mode�. �2 is fitted to experimental data; all other parameters are calculated.

Microcantilever A B C D E

Condition Air Water Air Water Air Water Air Water Air Water

Added fluid mass �g� �Eq. �6�� M��� 4.87�10−13 2.85�10−10 1.75�10−10 9.91�10−8 2.21�10−10 1.46�10−7 4.40�10−10 2.93�10−7 2.00�10−10 1.32�10−7

Fluid mass

Microcantilever mass
�Eq. �12��

	 0.049 28.46 0.024 13.5 0.020 14.0 0.011 7.28 0.006 4.27

Dispersion �see Eq. �1�� �2 4.66 4.74 4.74 4.80 4.45 4.89 4.51 4.81 4.94 5.15

Tip mass

Effective microcantilever mass
�Eq. �13��

m̄2 0 0 �0 �0 0.212 0.014 0.059 0.007 0 0

Equivalent stiffness �Eq. �2�� k2 /kc 42.5 38.1 38.1 35.5 64.9 32.7 56.1 35.2 31.5 28.7

Stiffness ratio

k2
water

k2
air

0.90 0.93 0.50 0.63 0.91

Optical lever sensitivity �Eq. �3�� 
2 4.92 4.62 4.61 4.41 6.08 4.15 5.67 4.38 4.01 3.51

Optical lever sensitivity ratio


2
water


2
air

0.94 0.96 0.68 0.77 0.88
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D. Experimental results: Optical lever sensitivities

Most AFMs do not measure the deflection of the micro-
cantilever directly, but instead measure the slope of the mi-
crocantilever at the free end. The slope is converted to an
equivalent deflection by way of an experimental calibration
factor, which is referred to as the optical lever sensitivity.
Because each eigenmode has a different slope at the free end,
each eigenmode must have a different optical lever
sensitivity.6,8

Using the same fit to experimental data as described
above, the optical lever sensitivity 
i of the extracted ith
eigenmode is calculated as


i =
�

�x
�i�1� . �3�

The results are listed in Table III. For microcantilevers A and
B, 
2

air and 
2
water are close to each other, while those of

microcantilevers C and D are significantly smaller �37% and
30%, respectively� in water than in air.

E. Experimental summary

The experimental results clearly show that �1� for canti-
levers A and B �tipless or with negligible tip mass�, the sec-
ond eigenmode stiffness and optical lever sensitivity are
similar in air or water and �2� for cantilevers C and D �with
tip mass�, the second eigenmode stiffness and the optical
lever sensitivity decrease significantly when the microcanti-
levers are immersed in water.

III. THEORY

To provide a physical explanation for these results, the
eigenmode shapes of a hydrodynamically loaded microcan-
tilever with a tip mass are investigated analytically. There
have been a number of recent papers considering hydrody-
namic loading and its implications for AFM �e.g., Refs. 5
and 29–33�. Most of these papers have focused on effects on
resonance frequency and quality factor rather than the eigen-
mode shapes, stiffnesses, and optical lever sensitivities that
are considered here. A few works23 have investigated the
effects on eigenmode shapes, but the effects and their impli-
cations for AFM calibration were not fully explored. The
effect of tip mass on the eigenmode shapes in air has been
reported previously,34,35 but the focus was mainly on optical
lever sensitivity and static bending stiffness and the effects in
liquids were not explored. One key idea—that tipped and
tipless microcantilever eigenmodes would be similar in water
due to dominance of hydrodynamic added mass—was sug-
gested in Ref. 36. Their discussion was framed in terms of
resonant frequencies and quality factors.

The hydrodynamic loading is typically described by its
Fourier transform.23,37 The nondimensional equation of mo-
tion for the transverse vibrations of a long slender microcan-
tilever with uniform cross section subject to a hydrodynamic
force in an incompressible, viscous fluid is given by

EI

L3 ŵ��x,�� − �2�cALŵ�x,�� =
�

4
� f�

2b2����ŵ�x,��L ,

�4�

where x, w, �, �c, A, � f, b, L, and � are the coordinate along
the microcantilever nondimensionalized by the length, trans-
verse deflection, frequency, microcantilever density, micro-
cantilever cross sectional area, fluid density, microcantilever
width, microcantilever length, and hydrodynamic function,38

respectively, �·̂� denotes the Fourier transform, and � · �� de-
notes x-differentiation. The hydrodynamic function is com-
plex valued with the real part representing the fluid inertial
forces and the imaginary part representing the fluid viscous
forces. The boundary conditions are

ŵ�0,�� = 0, ŵ��0,�� = 0, ŵ��1,�� = 0,

EI

L3 ŵ��1,�� = − mtip�
2ŵ�1,�� , �5�

where mtip is the tip mass. The hydrodynamic force can be

written in terms of separate added mass �M̂���� and viscosity
�ĉ���� coefficients:

M̂��� =
�

4
� fb

2 Re������L ,

ĉ��� = −
�

4
� f�b2 Im������L . �6�

It can be shown that the viscous damping has little effect on
the eigenmode shapes so that the term is neglected and Eq.
�4� is written as

EI

L3 ŵ��x,�� − �2��cAL + M̂����ŵ�x,�� = 0. �7�

To solve the eigenvalue problem �7�, a standard separa-
tion of variables ŵ�x ,��=W�x�ei�t yields

W��x� − �4W�x� = 0, �8�

L3

EI
�2��cAL + M̂���� = �4. �9�

The general solution for W in Eq. �8� is

�i�x� = C1 sin��ix� + C2 sinh��ix� + C3 cos��ix�

+ C4 cosh��ix� . �10�

Substituting Eq. �10� into Eq. �5� and setting the determinant
to zero yield the following characteristic equation:

mtip�
2�sinh���cos��� − sin���cosh����

+
EI

L3 cos���cosh����3 +
EI

L3 �3 = 0, �11�

which must hold for Eq. �10� to have a nontrivial solution.
Solving for the coefficients Ci yields that nontrivial solution,
namely, the cantilever mode shape equation �1�.

Defining
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	n��� =
M̂���
�cAL

�12�

as the nondimensional ratio of added fluid mass to microcan-
tilever mass in the nth eigenmode and

m̄n��� =
mtip

�cAL�1 + 	n����
�13�

as the nondimensional ratio of the tip mass to the remainder
of the mass �microcantilever mass plus added fluid mass�,
Eq. �11� can be written in the form

cos �n cosh �n + 1 + m̄n����n�cos �n sinh �n

− sin �n cosh �n� = 0. �14�

In the case that mtip=0, then � does not appear in Eq. �11�,
and the solutions for � are the same as those for a beam with
no hydrodynamic loading. Consequently from Eq. �1�, the
eigenmodes are the same as those for a beam with no hydro-
dynamic loading. But if mtip�0 then Eqs. �9� and �14� form
two coupled equations in the two unknowns � and � that
link the wavelength � of a flexural wave to its natural fre-
quency �. In this case �, and thus the eigenmode shape,

depends on the added hydrodynamic mass M̂���. In what
follows we investigate this case in more detail.

A. Tipped versus tipless microcantilever in a fluid

Our goal here is to derive formulas that can be used to
estimate the change in eigenmode shapes, stiffnesses, and
optical lever sensitivity when a small tip mass is added to an
otherwise uniform rectangular beam in a fluid. That is, we
want to know the dependence of kn and 
n on m̄n.

The determination of m̄n could be done in one of three
ways.

�1� In an experiment, one can measure the resonant fre-
quency either from a driven tuning curve or from a ther-
mal noise spectrum. From the measured resonant fre-
quency, one can use an expression for the hydrodynamic
function from the literature �e.g., Ref. 23� to calculate

M̂���. From this and the known microcantilever geom-
etry and tip mass, m̄n is calculated from Eqs. �12� and
�13�.

�2� As with calculation of stiffness, one problem with the
above method is that the microcantilever thickness may
not be well known, so there may be some uncertainty in
the direct calculation of microcantilever mass. Experi-
mentalists who wish to reduce the uncertainty in mass
may wish to either use a standard stiffness calibration
method to determine an estimate for thickness or use a
standard stiffness calibration method combined with a
measurement of the natural frequency to determine a
modal mass directly.

�3� For an analytical calculation, the situation is more com-
plicated because � and � are coupled. However, one

could guess a value for �, calculate M̂��� and then m̄n,
solve for � from Eq. �14�, and then calculate a new
value for � from Eq. �9�. This procedure can be iterated
until m̄n converges to a fixed value.

Once m̄n is known, one can work with Eq. �14� exclu-
sively and can disregard Eq. �9�. Equation �14� can be solved
for �n numerically and then Eq. �2� can be used to calculate
the equivalent stiffness of the eigenmode. To make the de-
pendence of stiffness on m̄n clear, � and stiffness values are
calculated numerically at different values of m̄n and then a
polynomial is fitted by least squares. This leads to the fol-
lowing simple expressions that link the equivalent stiffness
of the first, second, and third eigenmodes �k1, k2, and k3� to
the m̄n, the ratio of tip mass to the total mass
�microcantilever+hydrodynamic mass of the nth eigen-
mode�, and kc the static bending stiffness of the microcanti-
lever:

k1�m̄1� � kc�1.03 − 0.181m̄1 − 0.470m̄1
2 − 0.431m̄1

3� ,

k2�m̄2� � kc�40.3 + 278m̄2 + 692m̄2
2 − 44.5m̄2

3� ,

k3�m̄3� � kc�315 + 4234m̄3 + 21 230m̄3
2 − 500m̄3

3� . �15�

The curve fits have less than 0.6% error over the range 0
 m̄n0.5. When mtip=0, then m̄1= m̄2= m̄3=0, and we re-
cover the standard result for a tipless uniform rectangular
microcantilever in a fluid. It is clear from these expressions
that the first eigenmode stiffness is quite insensitive to the
nondimensional tip mass but the second and higher-order
eigenmode stiffnesses are sensitive to the nondimensional tip
mass. This explains why the first eigenmode is similar in all
of the experimental cases �air or water� but the second eigen-
mode is not.

Using this curve fit we now quantitatively explain the
observed experimental results for all the microcantilevers
�reference parameters in Tables I–III�. Microcantilever C has
a large tip such that mtip /�cAL is approximately 0.22 �esti-
mate based on dimensions from scanning electron micros-
copy images�. In air, 	 is small, m̄2

air=mtip / �1+	�=0.22 / �1
+0.021�=0.212; thus the second eigenmode is stiffened in
air: k2

air�130kc. However, in water 	 is large �the added fluid
mass is 14 times larger than the mass of the microcantilever
itself� and this added fluid mass dilutes the effect of the tip
mass such that m̄2

water=0.22 / �1+14�=0.014. Thus the second
eigenmode is only slightly stiffened in water: k2

water�44.4kc,
which is close to what is expected for a uniform tipless mi-
crocantilever. The theory predicts that the ratio of k2

water :k2
air

is 0.34:1 compared to the experimental value of 0.5:1 in Sec.
II B. For microcantilever D, the theory predicts k2

water :k2
air

=0.72:1 compared to the experimental value of 0.63:1. Thus
the theoretical expressions are reasonably close to experi-
mental measurements.

In contrast, microcantilever A has no tip such that m̄n is
zero in both air and water and microcantilever B has a hol-
low tip such that �m̄n��1 in both air and water. Thus, the first
and second eigenmodes of microcantilevers A and B are ex-
pected to be similar in both air and water. This is borne out
by the experimental data presented in Fig. 2 and Table III.
The theory would predict k2

water :k2
air to be exactly 1:1 for both

microcantilevers. In fact, k2
water :k2

air is 0.90:1 for microcanti-
lever A and 0.93:1 for microcantilever B, slightly lower than
predicted. This small deviation from the prediction is likely
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due to three-dimensional hydrodynamic effects at the free
end of the microcantilever that the preceding two-
dimensional theory cannot account for.

Now, following the same fitting procedure but for optical
lever sensitivity �3� instead of stiffness, it is possible to de-
rive simple expressions for 
i, the optical lever sensitivity of
a uniform rectangular microcantilever immersed in a fluid in
terms of the nondimensional tip mass m̄n �tip mass divided
by the sum of microcantilever mass and hydrodynamic mass
of nth eigenmode�,


1�m̄1� � 1.38 + 0.315m̄1 − 0.331m̄1
2,


2�m̄2� � 4.81 + 16.8m̄2 − 0.766m̄2
2,


3�m̄3� � 7.91 + 50.7m̄3 − 1.15m̄3
2. �16�

As with equivalent stiffness, the first eigenmode optical lever
sensitivity does not change significantly with m̄n while the
second and higher eigenmode sensitivity increases signifi-
cantly with m̄n. Because m̄n is small in water compared to air
�due to large density of water� we expect the optical lever
sensitivity for a tipped microcantilever to be lower in water
than in air. This is clearly observed in the measurements as
tabulated in Table III where the optical lever sensitivity of
the second eigenmodes of microcantilevers C and D de-
creases by nearly 20%–30% when placed in water.

To summarize, the nondimensional ratio m̄n is the key
parameter in this analysis. When m̄n is large �large tip mass
and/or small hydrodynamic added mass� then the higher-
order eigenmodes, equivalent stiffnesses, and optical lever
sensitivities are affected by the tip. When m̄n is small �small
tip mass and/or large hydrodynamic added mass� then the
higher-order eigenmodes, equivalent stiffnesses, and optical
lever sensitivities are not affected by the tip and the micro-
cantilever behaves as if it were tipless. This result is consis-
tent with a suggestion in Ref. 36 and complements the large
body of previous work on the effects of tip mass and hydro-
dynamic loading on the resonant frequencies and quality fac-
tors of microcantilevers in liquids.

IV. PICKET CANTILEVERS

Thus far only microcantilevers of constant section have
been studied, whereas microcantilever E has a picket shaped
end �but it is tipless�. The measured ODSs of microcantilever
E are shown in Fig. 3. Comparing Fig. 3 to the previous

microcantilevers in Fig. 2, the following conclusions are
clearly drawn.

�1� The first eigenmode of picket shaped tipless microcanti-
levers is nearly unaffected when placed in water from
air.

�2� The second eigenmode of the picket shaped microcanti-
lever E is changed slightly when placed in water from
air.

�3� The second eigenmode of microcantilever E in air is
different from those of the tipless microcantilevers A
and B.

Using the same fitting procedure as in Sec. II C, �i, ki,
and 
i are extracted from the experimental data for micro-
cantilever E, and the results are shown in Table III. k2

water /k2
air

is 0.91, similar to that of microcantilever A. 
2
water /
2

air is
0.88, slightly lower than that of microcantilever A. But, mi-
crocantilever E’s k2

air /kc is 25% softer than that of microcan-
tilever A. How are these results to be explained?

A picket shaped microcantilever can be considered a
rectangular microcantilever with some material removed
from near the free end. Thus a picket shaped microcantilever
can be modeled as a uniform rectangular microcantilever
with a negative tip mass. Since a positive tip mass stiffens
the higher-order eigenmodes and increases the optical lever
sensitivity in air, negative tip mass should soften higher-
order eigenmodes and decrease the optical lever sensitivity
in air,11 which is consistent with the observations in the pre-
ceding paragraph.

However, the negative tip mass analogy breaks down in
water. Contrary to the behavior of the microcantilever with
tip mass, microcantilever E’s second eigenmode does not
become more like microcantilever A’s second eigenmode
when it is immersed in water. The reasons for this cannot be
fully explained. However, the preceding theory was devel-
oped for uniform beams �two-dimensional fluid flow�,
whereas a picket shaped microcantilever may have a three-
dimensional fluid flow near the free end.

V. DISCUSSION AND IMPLICATIONS FOR DYNAMIC
AFM

Considering the above results, it is clear that for micro-
cantilevers with any significant tip mass, it is preferable to
calibrate the higher-order eigenmode stiffnesses and optical
lever sensitivities directly in the desired imaging media,
rather than calibrating in air and then using that value for
operating in liquid. Of course, based on the results of Refs. 2
and 20, there may be more uncertainty in a stiffness calibra-
tion in liquid than there is in air. But given the magnitude of
the difference in stiffness between air and water, some un-
certainty in a correct stiffness may be preferable to absolute
certainty in an incorrect stiffness.

The results presented in this work are useful in a number
of contexts where accurate knowledge of higher-order eigen-
mode stiffness is important.

�1� In bimodal AM-AFM,39 two eigenmodes are excited si-
multaneously. A goal of bimodal AFM is to provide in-
formation on sample material properties such as elastic-
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FIG. 3. �Color online� Measured ODSs for picket shaped microcantilever E
in air and water. Left column first ODS �first eigenmode� and right column
second ODS �first eigenmode plus second eigenmode�.

033506-7 D. Kiracofe and A. Raman J. Appl. Phys. 107, 033506 �2010�

Downloaded 14 Jul 2010 to 130.54.110.32. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



ity and dissipation by using the second eigenmode as an
additional signal channel. For example, the phase of the
second eigenmode has been shown to be significantly
more sensitive to material properties than the phase of
the first eigenmode.40 The quantitative interpretation of
bimodal AFM �i.e., relating observables such as phase
shift to tip-sample dissipation� depends on accurate
knowledge of the stiffness of the higher-order
eigenmodes.13,14

�2� Even for situations where only a single eigenmode is
excited, it may be preferable to excite an eigenmode
other than the fundamental. Several groups have shown
that operating AFM in higher eigenmodes can give su-
perior phase contrast images in tapping mode as com-
pared to the first eigenmode41,42 and enables very small
oscillation amplitudes in frequency modulation �FM�-
AFM comparable to the decay length of the interaction
forces, and thus increases the lateral resolution of the
images.43,44 Again, relating the experimental observables
to sample properties such as dissipation requires knowl-
edge of the eigenmode stiffness �e.g., Ref. 45�.

�3� There is an increasing interest in using FM techniques in
liquid environments �e.g., Refs. 46 and 47�. Exciting
higher eigenmodes may be desirable in FM-AFM in liq-
uids because higher eigenmodes have higher quality fac-
tors and stiffnesses than the first eigenmode. FM-AFM
allows the entire tip-sample interaction potential to be
reconstructed48 but again this requires accurate knowl-
edge of the eigenmode stiffness.

�4� In low Q environments �liquids�, even for situations
where only the first eigenmode is directly excited, the
tip-sample interaction force may momentarily excite
higher eigenmodes.49 This implies that most AFM op-
eration in liquid is inherently bimodal, and thus higher
eigenmodes must be accounted for in order to accurately
model the dynamics. For example, the momentarily ex-
cited eigenmodes can give rise to “drum-roll-like” ef-
fects in which the tip and sample interact multiple times
during one drive cycle.50 Simulations using the VEDA

software51 show that the bifurcation point between
single and double tapping is highly sensitive to the stiff-
ness of the second eigenmode. For example, differences
on the order of those observed for microcantilever C in
this work �50% difference in k2� makes the difference
between the bifurcation point being at 40% setpoint ratio
and 75% setpoint ratio.

VI. CONCLUSIONS

To summarize, the effect of hydrodynamic loading and
tip mass on the eigenmode shapes, stiffnesses, and optical
lever sensitivities of diving board microcantilevers in air and
water has been studied experimentally and analytically. Tip-
less microcantilevers have similar eigenmode shapes, stiff-
nesses, and optical lever sensitivities in both air and water.
The nondimensional ratio m̄n has been identified as the key
parameter that determines the effect of tip mass on the over-
all inertial loading of the microcantilever. A tip mass of more
than a few percent of the total microcantilever mass stiffens

the second and higher-order eigenmodes and increases their
optical lever sensitivities in air. But in water, the effect of tip
mass is diluted by the large hydrodynamic loading. Because
hydrodynamic inertia is large in liquid, the tip mass effect is
negligible compared to the large hydrodynamic mass. Thus
the second and higher-order eigenmodes of tipped microcan-
tilevers are softer in water than in air. A picket shape softens
the second and higher-order eigenmodes in air but this effect
is not diluted in liquid. Therefore, for any microcantilever
except a tipless rectangular microcantilever, a calibration of
higher eigenmodes taken in air may not be directly usable in
liquid.
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